Part Number Hot Search : 
XXXXX AD9281 805SF 6A20G KBP206G 02003 312225 MAC223A4
Product Description
Full Text Search
 

To Download IRF7314Q Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD -93945A
IRF7314Q
HEXFET(R) Power MOSFET
Typical Applications * Anti-lock Braking Systems (ABS) * Electronic Fuel Injection * Air bag Benefits * Advanced Process Technology * Dual P-Channel MOSFET * Ultra Low On-Resistance * 175C Operating Temperature * Repetitive Avalanche Allowed up to Tjmax * Automotive [Q101] Qualified Description
Specifically designed for Automotive applications, these HEXFET (R) Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET's are a 175C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. The 175C rating for the SO-8 package provides improved thermal performance with increased safe operating area and dual MOSFET die capability make it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available in Tape & Reel.
VDSS
-20V
RDS(on) max
0.058@VGS = -4.5V 0.098@VGS = -2.7V
ID
-5.2A -4.42A
S1 G1 S2 G2
1
8
D1 D1 D2 D2
2
7
3
6
4
5
T o p V ie w
SO-8
Absolute Maximum Ratings
Parameter
VDS ID @ TA = 25C ID @ TA = 70C IDM PD @TA = 25C PD @TA = 70C VGS EAS IAR EAR TJ , TSTG Drain-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain CurrentQ Maximum Power DissipationS Maximum Power DissipationS Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche EnergyR Avalanche CurrentQ Repetitive Avalanche Energy Junction and Storage Temperature Range
Max.
-20 -5.2 -4.3 -43 2.4 1.7 16 12 610 -5.2 See Fig.14, 15, 16 -55 to + 175
Units
V A W W mW/C V mJ A mJ C
Thermal Resistance
Parameter
RJA
Max.
Units
62.5 C/W
Maximum Junction-to-Ambient S
www.irf.com
1
03/20/02
IRF7314Q
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)DSS
V(BR)DSS/TJ
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
Min. -20 --- --- --- -0.7 6.8 --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Typ. --- 0.009 0.049 0.082 --- --- --- --- --- --- 19 2.1 9.3 18 26 41 38 913 512 260
Max. Units Conditions --- V VGS = 0V, ID = -250A --- V/C Reference to 25C, ID = -1mA 0.058 VGS = -4.5V, ID = -5.2A R 0.098 VGS = -2.7V, ID = -4.42A R --- V VDS = VGS, ID = -250A --- S VDS = 10V, ID = -5.2A -1.0 VDS = -16V, VGS = 0V A -25 VDS = -16V, VGS = 0V, TJ = 150C -100 VGS = -12V nA 100 VGS = 12V 29 ID = -5.2A 3.2 nC VDS = -16V 14 VGS = -4.5V --- VDD = -10V --- ID = -1.0A ns --- RG = 6.0 --- VGS = -4.5V R --- VGS = 0V --- pF VDS = -15V --- = 1.0MHz
Source-Drain Ratings and Characteristics
IS
ISM
VSD trr Qrr
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Q Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
Min. Typ. Max. Units --- --- --- --- --- --- --- --- 44 54 -3.0 A -43 -1.0 66 81 V ns nC
Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25C, IS = -3.0A, VGS = 0V R TJ = 25C, I F = -3.0A di/dt = -100A/s R
D
S
Notes:
Q Repetitive rating; pulse width limited by
max. junction temperature. R Starting TJ = 25C, L = 45mH RG = 25, IAS = -5.2A.
S Surface mounted on FR-4 board, t 10sec. T Pulse width 300s; duty cycle 2%.
2
www.irf.com
IRF7314Q
100
VGS -7.5V -5.0V -4.5V -3.5V -3.0V -2.7V -2.0V BOTTOM -1.5V TOP
100
-ID, Drain-to-Source Current (A)
10
-ID, Drain-to-Source Current (A)
10
VGS -7.5V -5.0V -4.5V -3.5V -3.0V -2.7V -2.0V BOTTOM -1.5V TOP
1
-1.5V
1
-1.5V
0.1
20s PULSE WIDTH Tj = 25C
0.01 0.1 1 10 100 0.1 0.1 1
20s PULSE WIDTH Tj = 175C
10 100
-VDS, Drain-to-Source Voltage (V)
-VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
2.0
-I D, Drain-to-Source Current (A)
TJ = 25 C TJ = 175 C
R DS(on) , Drain-to-Source On Resistance (Normalized)
ID = -5.2A
1.5
10
1.0
1
0.5
0.1 1.0
V DS = -15V 20s PULSE WIDTH 4.0 2.0 3.0 5.0
0.0 -60 -40 -20 0
VGS = -4.5V
20 40 60 80 100 120 140 160 180
-VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature ( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF7314Q
2000
1600
-VGS, Gate-to-Source Voltage (V)
VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd
10
ID = -5.2A
8
VDS =-16V
C, Capacitance (pF)
1200
Ciss C oss C rss
6
800
4
400
2
0 1 10 100
0 0 8 16 24 32 40
-VDS , Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
1000
-ISD , Reverse Drain Current (A)
TJ = 175 C
OPERATION IN THIS AREA LIMITED BY R
DS(on)
10
TJ = 25 C
-ID , Drain Current (A) I
100
100us 1ms 10ms
1
10
0.1 0.2
V GS = 0 V
0.5 0.8 1.1 1.4
1 0.1
TC = 25 C TJ = 175 C Single Pulse
1 10
100
-VSD ,Source-to-Drain Voltage (V)
-VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF7314Q
6.0
VDS
5.0
RD
VGS RG
D.U.T.
+
-I D , Drain Current (A)
4.0
VGS
3.0
Pulse Width 1 s Duty Factor 0.1 %
2.0
Fig 10a. Switching Time Test Circuit
td(on) tr t d(off) tf
1.0
VGS
0.0 25 50 75 100 125 150 175
10%
TC , Case Temperature ( C)
90% VDS
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10b. Switching Time Waveforms
100 D = 0.50
Thermal Response (Z thJA )
0.20 10 0.10 0.05 0.02 1 0.01
0.1
SINGLE PULSE (THERMAL RESPONSE)
0.01 0.00001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 1 10 0.01 0.1
PDM t1 t2 100
0.0001
0.001
t1 , Rectangular Pulse Duration (sec)
Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
-
VDD
5
IRF7314Q
RDS ( on ) , Drain-to-Source On Resistance ( )
( RDS(on), Drain-to -Source On Resistance )
0.080
0.430
0.070
0.330
0.060
VGS = -2.7V 0.230
0.050
ID = -5.2A
0.040
0.130 VGS = -4.5V
0.030 2.0 4.0 6.0 8.0
0.030 0 10 20 30 40 50 -ID , Drain Current ( A )
-VGS, Gate -to -Source Voltage (V)
Fig 11. Typical On-Resistance Vs. Gate Voltage
QG
Fig 12. Typical On-Resistance Vs. Drain Current
10 V
QGS VG QGD
1600
1200
TOP ID -2.1A -4.4A -5.2A BOTTOM
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator Same Type as D.U.T.
E AS , Single Pulse Avalanche Energy (mJ)
800
50K 12V .2F .3F
400
D.U.T. VGS
3mA
+ V - DS
0 25 50 75 100 125 150 175
Starting Tj, Junction Temperature
IG ID
( C)
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
Fig 14. Maximum Avalanche Energy Vs. Drain Current
6
www.irf.com
IRF7314Q
100
Duty Cycle = Single Pulse
- Avalanche Current (A)
10
0.01
1
Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses
0.05 0.10
0.1
0.01 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
700 600
EAR , Avalanche Energy (mJ)
TOP Single Pulse BOTTOM 10% Duty Cycle ID = -5.2A
500 400 300 200 100 0 25 50 75 100 125 150
Starting T J , Junction Temperature (C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav *f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = T/ ZthJC Iav = 2T/ [1.3*BV*Zth] EAS (AR) = PD (ave)*t av
Fig 16. Maximum Avalanche Energy Vs. Temperature
www.irf.com
7
IRF7314Q
SO-8 Package Details
D A 5 B
DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMET E RS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
c D E e e1 H K L y
1
2
3
4
.050 BAS IC .025 BAS IC .2284 .0099 .016 0 .2440 .0196 .050 8
1.27 BAS IC 0.635 BAS IC 5.80 0.25 0.40 0 6.20 0.50 1.27 8
6X
e
e1 A C
K x 45
0.10 [.004]
y
8X b 0.25 [.010]
A1 CAB
8X L 7
8X c
NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENSION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING T O A S UBS T RAT E. 3X 1.27 [.050]
FOOT PRINT 8X 0.72 [.028]
6.46 [.255]
8X 1.78 [.070]
Part Marking
8
www.irf.com
IRF7314Q
Tape and Reel
T E R M IN A L N U M B E R 1
1 2 .3 ( .48 4 ) 1 1 .7 ( .46 1 )
8 .1 ( .31 8 ) 7 .9 ( .31 2 )
F E E D D IR E C T IO N
N O TES: 1 . C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2 . A L L D IM E N S IO N S A R E S H O W N IN M IL L IM E T E R S (IN C H E S ). 3 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1.
33 0.0 0 (1 2 .9 9 2 ) M AX .
1 4 .4 0 ( .5 66 ) 1 2 .4 0 ( .4 88 ) N O TE S : 1. C O N T R O L L IN G D IM E N S IO N : M IL L IM E T E R . 2. O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1 .
Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/02
www.irf.com
9


▲Up To Search▲   

 
Price & Availability of IRF7314Q

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X